Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7665, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561398

RESUMO

The integrity of the intestinal mucus barrier is crucial for human health, as it serves as the body's first line of defense against pathogens. However, postnatal development of the mucus barrier and interactions between maturity and its ability to adapt to external challenges in neonatal infants remain unclear. In this study, we unveil a distinct developmental trajectory of the mucus barrier in preterm piglets, leading to enhanced mucus microstructure and reduced mucus diffusivity compared to term piglets. Notably, we found that necrotizing enterocolitis (NEC) is associated with increased mucus diffusivity of our large pathogen model compound, establishing a direct link between the NEC condition and the mucus barrier. Furthermore, we observed that addition of sodium decanoate had varying effects on mucus diffusivity depending on maturity and health state of the piglets. These findings demonstrate that regulatory mechanisms governing the neonatal mucosal barrier are highly complex and are influenced by age, maturity, and health conditions. Therefore, our results highlight the need for specific therapeutic strategies tailored to each neonatal period to ensure optimal gut health.


Assuntos
Ácidos Decanoicos , Enterocolite Necrosante , Muco , Recém-Nascido , Animais , Humanos , Suínos , Inflamação , Suplementos Nutricionais , Enterocolite Necrosante/tratamento farmacológico , Mucosa Intestinal
2.
ACS Appl Mater Interfaces ; 16(15): 18422-18433, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573069

RESUMO

DNA nanopores have emerged as powerful tools for molecular sensing, but the efficient insertion of large DNA nanopores into lipid membranes remains challenging. In this study, we investigate the potential of cell-penetrating peptides (CPPs), specifically SynB1 and GALA, to enhance the insertion efficiency of large DNA nanopores. We constructed SynB1- or GALA-functionalized DNA nanopores with an 11 nm inner diameter and visualized and quantified their membrane insertion using a TIRF microscopy-based single-liposome assay. The results demonstrated that incorporating an increasing number of SynB1 or GALA peptides into the DNA nanopore significantly enhanced the membrane perforation. Kinetic analysis revealed that the DNA nanopore scaffold played a role in prearranging the CPPs, which facilitated membrane interaction and pore formation. Notably, the use of pH-responsive GALA peptides allowed highly efficient and pH-controlled insertion of large DNA pores. Furthermore, single-channel recording elucidated that the insertion process of single GALA-modified nanopores into planar lipid bilayers was dynamic, likely forming transient large toroidal pores. Overall, our study highlights the potential of CPPs as insertion enhancers for DNA nanopores, which opens avenues for improved molecule sensing and the controlled release of cargo molecules.


Assuntos
Peptídeos Penetradores de Células , Nanoporos , Cinética , DNA/química , Bicamadas Lipídicas/química
3.
Nat Commun ; 15(1): 1763, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409214

RESUMO

The morphology of protein assemblies impacts their behaviour and contributes to beneficial and aberrant cellular responses. While single-molecule localization microscopy provides the required spatial resolution to investigate these assemblies, the lack of universal robust analytical tools to extract and quantify underlying structures limits this powerful technique. Here we present SEMORE, a semi-automatic machine learning framework for universal, system- and input-dependent, analysis of super-resolution data. SEMORE implements a multi-layered density-based clustering module to dissect biological assemblies and a morphology fingerprinting module for quantification by multiple geometric and kinetics-based descriptors. We demonstrate SEMORE on simulations and diverse raw super-resolution data: time-resolved insulin aggregates, and published data of dSTORM imaging of nuclear pore complexes, fibroblast growth receptor 1, sptPALM of Syntaxin 1a and dynamic live-cell PALM of ryanodine receptors. SEMORE extracts and quantifies all protein assemblies, their temporal morphology evolution and provides quantitative insights, e.g. classification of heterogeneous insulin aggregation pathways and NPC geometry in minutes. SEMORE is a general analysis platform for super-resolution data, and being a time-aware framework can also support the rise of 4D super-resolution data.


Assuntos
Insulinas , Imagem Individual de Molécula , Imagem Individual de Molécula/métodos , Fibroblastos , Aprendizado de Máquina , Análise de Dados
4.
Elife ; 132024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285015

RESUMO

A new platform that can follow the movement of individual proteins inside millions of cells in a single day will help contribute to existing knowledge of cell biology and identify new therapeutics.


Assuntos
Conhecimento , Movimento
5.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260258

RESUMO

The endocytic pathway is both an essential route of molecular uptake in cells and a potential entry point for pathology-inducing cargo. The cell-to-cell spread of cytotoxic aggregates, such as those of α-synuclein (α-syn) in Parkinson's Disease (PD), exemplifies this duality. Here we used a human iPSC-derived induced neuronal model (iNs) prone to death mediated by aggregation in late endosomes and lysosomes of endogenous α-syn, seeded by internalized pre-formed fibrils of α-syn (PFFs). This PFF-mediated death was not observed with parental iPSCs or other non-neuronal cells. Using live-cell optical microscopy to visualize the read out of biosensors reporting endo-lysosome wounding, we discovered that up to about 10% of late endosomes and lysosomes in iNs exhibited spontaneous constitutive perforations, regardless of the presence of internalized PFFs. This wounding, absent in parental iPSCs and non-neuronal cells, corresponded to partial damage by nanopores in the limiting membranes of a subset of endolysosomes directly observed by volumetric focused ion beam scanning electron microscopy (FIB-SEM) in iNs and in CA1 pyramidal neurons from mouse brain, and not found in iPSCs or in other non-neuronal cells in culture or in mouse liver and skin. We suggest that the compromised limiting membranes in iNs and neurons in general are the primary conduit for cytosolic α-syn to access PFFs entrapped within endo-lysosomal lumens, initiating PFF-mediated α-syn aggregation. Significantly, eradicating the intrinsic endolysosomal perforations in iNs by inhibiting the endosomal Phosphatidylinositol-3-Phosphate/Phosphatidylinositol 5-Kinase (PIKfyve kinase) using Apilimod or Vacuolin-1 markedly reduced PFF-induced α-syn aggregation, despite PFFs continuing to enter the endolysosomal compartment. Crucially, this intervention also diminished iN death associated with PFF incubation. Our results reveal the surprising presence of intrinsically perforated endo-lysosomes in neurons, underscoring their crucial early involvement in the genesis of toxic α-syn aggregates induced by internalized PFFs. This discovery offers a basis for employing PIKfyve kinase inhibition as a potential therapeutic strategy to counteract synucleinopathies.

6.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014323

RESUMO

Sub-cellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with an unprecedented level of precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the sub-cellular environment, is labor-intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework to interpret the diffusional 2D or 3D temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying distinct types of endosomal organelles, and clathrin-coated pits and vesicles with up to 95% accuracy and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone indicates that besides structure, motion encodes function at the molecular and subcellular level.

7.
Biomolecules ; 13(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37189378

RESUMO

The function of most lipases is controlled by the lid, which undergoes conformational changes at a water-lipid interface to expose the active site, thus activating catalysis. Understanding how lid mutations affect lipases' function is important for designing improved variants. Lipases' function has been found to correlate with their diffusion on the substrate surface. Here, we used single-particle tracking (SPT), a powerful tool for deciphering enzymes' diffusional behavior, to study Thermomyces lanuginosus lipase (TLL) variants with different lid structures in a laundry-like application condition. Thousands of parallelized recorded trajectories and hidden Markov modeling (HMM) analysis allowed us to extract three interconverting diffusional states and quantify their abundance, microscopic transition rates, and the energy barriers for sampling them. Combining those findings with ensemble measurements, we determined that the overall activity variation in the application condition is dependent on surface binding and lipase mobility when bound. Specifically, the L4 variant with a TLL-like lid and wild-type (WT) TLL displayed similar ensemble activity, but WT bound stronger to the surface than L4, while L4 had a higher diffusion coefficient and thus activity when bound to the surface. These mechanistic elements can only be de-convoluted by our combined assays. Our findings offer fresh perspectives on the development of the next iteration of enzyme-based detergent.


Assuntos
Eurotiales , Lipase , Lipase/química , Mutação
8.
Commun Biol ; 6(1): 178, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792809

RESUMO

Insulin formulations with diverse oligomerization states are the hallmark of interventions for the treatment of diabetes. Here using single-molecule recordings we firstly reveal that insulin oligomerization can operate via monomeric additions and secondly quantify the existence, abundance and kinetic characterization of diverse insulin assembly and disassembly pathways involving addition of monomeric, dimeric or tetrameric insulin species. We propose and experimentally validate a model where the insulin self-assembly pathway is rerouted, favoring monomeric or oligomeric assembly, by solution concentration, additives and formulations. Combining our practically complete kinetic characterization with rate simulations, we calculate the abundance of each oligomeric species from nM to mM offering mechanistic insights and the relative abundance of all oligomeric forms at concentrations relevant both for secreted and administrated insulin. These reveal a high abundance of all oligomers and a significant fraction of hexamer resulting in practically halved bioavailable monomer concentration. In addition to providing fundamental new insights, the results and toolbox presented here can be universally applied, contributing to the development of optimal insulin formulations and the deciphering of oligomerization mechanisms for additional proteins.


Assuntos
Insulina Regular Humana , Insulina , Insulina/metabolismo , Cinética
9.
J Phys Chem B ; 127(9): 1922-1931, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36853329

RESUMO

Macromolecules organize themselves into discrete membrane-less compartments. Mounting evidence has suggested that nucleosomes as well as DNA itself can undergo clustering or condensation to regulate genomic activity. Current in vitro condensation studies provide insight into the physical properties of condensates, such as surface tension and diffusion. However, methods that provide the resolution needed for complex kinetic studies of multicomponent condensation are desired. Here, we use a supported lipid bilayer platform in tandem with total internal reflection microscopy to observe the two-dimensional movement of DNA and nucleosomes at the single-molecule resolution. This dimensional reduction from three-dimensional studies allows us to observe the initial condensation events and dissolution of these early condensates in the presence of physiological condensing agents. Using polyamines, we observed that the initial condensation happens on a time scale of minutes while dissolution occurs within seconds upon charge inversion. Polyamine valency, DNA length, and GC content affect the threshold polyamine concentration for condensation. Protein-based nucleosome condensing agents, HP1α and Ki-67, have much lower threshold concentrations for condensation than charge-based condensing agents, with Ki-67 being the most effective, requiring as low as 100 pM for nucleosome condensation. In addition, we did not observe condensate dissolution even at the highest concentrations of HP1α and Ki-67 tested. We also introduce a two-color imaging scheme where nucleosomes of high density labeled in one color are used to demarcate condensate boundaries and identical nucleosomes of another color at low density can be tracked relative to the boundaries after Ki-67-mediated condensation. Our platform should enable the ultimate resolution of single molecules in condensation dynamics studies of chromatin components under defined physicochemical conditions.


Assuntos
Nucleossomos , Poliaminas , Antígeno Ki-67 , Cinética , Imagem Individual de Molécula , DNA/química , Cromatina
10.
J Phys Chem Lett ; 14(4): 912-919, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669144

RESUMO

Amyloid aggregation is associated with many diseases and may also occur in therapeutic protein formulations. Addition of co-solutes is a key strategy to modulate the stability of proteins in pharmaceutical formulations and select inhibitors for drug design in the context of diseases. However, the heterogeneous nature of this multicomponent system in terms of structures and mechanisms poses a number of challenges for the analysis of the chemical reaction. Using insulin as protein system and polysorbate 80 as co-solute, we combine a spatially resolved fluorescence approach with single molecule microscopy and machine learning methods to kinetically disentangle the different contributions from multiple species within a single aggregation experiment. We link the presence of interfaces to the degree of heterogeneity of the aggregation kinetics and retrieve the rate constants and underlying mechanisms for single aggregation events. Importantly, we report that the mechanism of inhibition of the self-assembly process depends on the details of the growth pathways of otherwise macroscopically identical species. This information can only be accessed by the analysis of single aggregate events, suggesting our method as a general tool for a comprehensive physicochemical characterization of self-assembly reactions.


Assuntos
Amiloide , Imagem Individual de Molécula , Amiloide/química , Insulina/química , Catálise , Cinética
11.
Int J Pharm ; 631: 122490, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36521637

RESUMO

The immunogenicity risk of therapeutic protein aggregates has been extensively investigated over the past decades. While it is established that not all aggregates are equally immunogenic, the specific aggregate characteristics, which are most likely to induce an immune response, remain ambiguous. The aim of this study was to perform comprehensive in vitro and in vivo immunogenicity assessment of human insulin aggregates varying in size, structure and chemical modifications, while keeping other morphological characteristics constant. We found that flexible aggregates with highly altered secondary structure were most immunogenic in all setups, while compact aggregates with native-like structure were found to be immunogenic primarily in vivo. Moreover, sub-visible (1-100 µm) aggregates were found to be more immunogenic than sub-micron (0.1-1 µm) aggregates, while chemical modifications (deamidation, ethylation and covalent dimers) were not found to have any measurable impact on immunogenicity. The findings highlight the importance of utilizing aggregates varying in few characteristics for assessment of immunogenicity risk of specific morphological features and may provide a workflow for reliable particle analysis in biotherapeutics.


Assuntos
Agregados Proteicos , Humanos
12.
Nat Commun ; 13(1): 5402, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104339

RESUMO

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models.


Assuntos
Benchmarking , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Modelos Teóricos
13.
Commun Biol ; 5(1): 850, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987792

RESUMO

Protein misfolding in the form of fibrils or spherulites is involved in a spectrum of pathological abnormalities. Our current understanding of protein aggregation mechanisms has primarily relied on the use of spectrometric methods to determine the average growth rates and diffraction-limited microscopes with low temporal resolution to observe the large-scale morphologies of intermediates. We developed a REal-time kinetics via binding and Photobleaching LOcalization Microscopy (REPLOM) super-resolution method to directly observe and quantify the existence and abundance of diverse aggregate morphologies of human insulin, below the diffraction limit and extract their heterogeneous growth kinetics. Our results revealed that even the growth of microscopically identical aggregates, e.g., amyloid spherulites, may follow distinct pathways. Specifically, spherulites do not exclusively grow isotropically but, surprisingly, may also grow anisotropically, following similar pathways as reported for minerals and polymers. Combining our technique with machine learning approaches, we associated growth rates to specific morphological transitions and provided energy barriers and the energy landscape at the level of single aggregate morphology. Our unifying framework for the detection and analysis of spherulite growth can be extended to other self-assembled systems characterized by a high degree of heterogeneity, disentangling the broad spectrum of diverse morphologies at the single-molecule level.


Assuntos
Proteínas Amiloidogênicas , Microscopia , Amiloide/química , Proteínas Amiloidogênicas/química , Amiloidose/etiologia , Humanos , Insulina/química , Cinética , Microscopia/métodos
14.
ACS Appl Mater Interfaces ; 14(26): 29659-29667, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35748880

RESUMO

Reconstitution of membrane proteins into model membranes is an essential approach for their functional analysis under chemically defined conditions. Established model-membrane systems used in ensemble average measurements are limited by sample heterogeneity and insufficient knowledge of lipid and protein content at the single vesicle level, which limits quantitative analysis of vesicle properties and prevents their correlation with protein activity. Here, we describe a versatile total internal reflection fluorescence microscopy-based bleaching protocol that permits parallel analysis of multiple parameters (physical size, tightness, unilamellarity, membrane protein content, and orientation) of individual proteoliposomes prepared with fluorescently tagged membrane proteins and lipid markers. The approach makes use of commercially available fluorophores including the commonly used nitrobenzoxadiazole dye and may be applied to deduce functional molecular characteristics of many types of reconstituted fluorescently tagged membrane proteins.


Assuntos
Proteínas de Membrana , Proteolipídeos , Ácido Hipocloroso , Membranas , Microscopia de Fluorescência/métodos , Proteolipídeos/química , Proteolipídeos/metabolismo
15.
Nat Commun ; 13(1): 2446, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508541

RESUMO

The dopamine transporter facilitates dopamine reuptake from the extracellular space to terminate neurotransmission. The transporter belongs to the neurotransmitter:sodium symporter family, which includes transporters for serotonin, norepinephrine, and GABA that utilize the Na+ gradient to drive the uptake of substrate. Decades ago, it was shown that the serotonin transporter also antiports K+, but investigations of K+-coupled transport in other neurotransmitter:sodium symporters have been inconclusive. Here, we show that ligand binding to the Drosophila- and human dopamine transporters are inhibited by K+, and the conformational dynamics of the Drosophila dopamine transporter in K+ are divergent from the apo- and Na+-states. Furthermore, we find that K+ increases dopamine uptake by the Drosophila dopamine transporter in liposomes, and visualize Na+ and K+ fluxes in single proteoliposomes using fluorescent ion indicators. Our results expand on the fundamentals of dopamine transport and prompt a reevaluation of the impact of K+ on other transporters in this pharmacologically important family.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Simportadores , Animais , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Drosophila/metabolismo , Transporte de Íons , Íons/metabolismo , Neurotransmissores/metabolismo , Potássio/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sódio/metabolismo , Simportadores/metabolismo
16.
Nat Chem ; 14(5): 558-565, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35379901

RESUMO

Combinatorial high-throughput methodologies are central for both screening and discovery in synthetic biochemistry and biomedical sciences. They are, however, often reliant on large-scale analyses and thus limited by a long running time and excessive materials cost. We here present a single-particle combinatorial multiplexed liposome fusion mediated by DNA for parallelized multistep and non-deterministic fusion of individual subattolitre nanocontainers. We observed directly the efficient (>93%) and leakage free stochastic fusion sequences for arrays of surface-tethered target liposomes with six freely diffusing populations of cargo liposomes, each functionalized with individual lipidated single-stranded DNA and fluorescently barcoded by a distinct ratio of chromophores. The stochastic fusion resulted in a distinct permutation of fusion sequences for each autonomous nanocontainer. Real-time total internal reflection imaging allowed the direct observation of >16,000 fusions and 566 distinct fusion sequences accurately classified using machine learning. The high-density arrays of surface-tethered target nanocontainers (~42,000 containers per mm2) offers entire combinatorial multiplex screens using only picograms of material.


Assuntos
DNA , Lipossomos , DNA de Cadeia Simples , Fusão de Membrana
17.
ACS Appl Mater Interfaces ; 13(28): 33704-33712, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34235926

RESUMO

Lipases comprise one of the major enzyme classes in biotechnology with applications within, e.g., baking, brewing, biocatalysis, and the detergent industry. Understanding the mechanisms of lipase function and regulation is therefore important to facilitate the optimization of their function by protein engineering. Advances in single-molecule studies in model systems have provided deep mechanistic insights on lipase function, such as the existence of functional states, their dependence on regulatory cues, and their correlation to activity. However, it is unclear how these observations translate to enzyme behavior in applied settings. Here, single-molecule tracking of individual Thermomyces lanuginosus lipase (TLL) enzymes in a detergency application system allowed real-time direct observation of spatiotemporal localization, and thus diffusional behavior, of TLL enzymes on a lard substrate. Parallelized imaging of thousands of individual enzymes allowed us to observe directly the existence and quantify the abundance and interconversion kinetics between three diffusional states that we recently provided evidence to correlate with function. We observe redistribution of the enzyme's diffusional pattern at the lipid-water interface as well as variations in binding efficiency in response to surfactants and calcium, demonstrating that detergency effectors can drive the sampling of lipase functional states. Our single-molecule results combined with ensemble activity assays and enzyme surface binding efficiency readouts allowed us to deconvolute how application conditions can significantly alter protein functional dynamics and/or surface binding, both of which underpin enzyme performance. We anticipate that our results will inspire further efforts to decipher and integrate the dynamic nature of lipases, and other enzymes, in the design of new biotechnological solutions.


Assuntos
Cálcio/química , Hidrolases de Éster Carboxílico/química , Difusão , Eurotiales/enzimologia , Proteínas Fúngicas/química , Tensoativos/química , Ácidos Alcanossulfônicos/química , Éteres/química , Gorduras/química , Glicóis/química , Cadeias de Markov , Imagem Individual de Molécula , Triglicerídeos/química
18.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34321355

RESUMO

Single-particle tracking (SPT) is a key tool for quantitative analysis of dynamic biological processes and has provided unprecedented insights into a wide range of systems such as receptor localization, enzyme propulsion, bacteria motility, and drug nanocarrier delivery. The inherently complex diffusion in such biological systems can vary drastically both in time and across systems, consequently imposing considerable analytical challenges, and currently requires an a priori knowledge of the system. Here we introduce a method for SPT data analysis, processing, and classification, which we term "diffusional fingerprinting." This method allows for dissecting the features that underlie diffusional behavior and establishing molecular identity, regardless of the underlying diffusion type. The method operates by isolating 17 descriptive features for each observed motion trajectory and generating a diffusional map of all features for each type of particle. Precise classification of the diffusing particle identity is then obtained by training a simple logistic regression model. A linear discriminant analysis generates a feature ranking that outputs the main differences among diffusional features, providing key mechanistic insights. Fingerprinting operates by both training on and predicting experimental data, without the need for pretraining on simulated data. We found this approach to work across a wide range of simulated and experimentally diverse systems, such as tracked lipases on fat substrates, transcription factors diffusing in cells, and nanoparticles diffusing in mucus. This flexibility ultimately supports diffusional fingerprinting's utility as a universal paradigm for SPT diffusional analysis and prediction.


Assuntos
Aprendizado de Máquina , Imagem Individual de Molécula/métodos , Simulação por Computador , Difusão , Interpretação de Imagem Assistida por Computador , Movimento , Tamanho da Partícula
19.
Nat Commun ; 12(1): 2260, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859207

RESUMO

Metabolic control is mediated by the dynamic assemblies and function of multiple redox enzymes. A key element in these assemblies, the P450 oxidoreductase (POR), donates electrons and selectively activates numerous (>50 in humans and >300 in plants) cytochromes P450 (CYPs) controlling metabolism of drugs, steroids and xenobiotics in humans and natural product biosynthesis in plants. The mechanisms underlying POR-mediated CYP metabolism remain poorly understood and to date no ligand binding has been described to regulate the specificity of POR. Here, using a combination of computational modeling and functional assays, we identify ligands that dock on POR and bias its specificity towards CYP redox partners, across mammal and plant kingdom. Single molecule FRET studies reveal ligand binding to alter POR conformational sampling, which results in biased activation of metabolic cascades in whole cell assays. We propose the model of biased metabolism, a mechanism akin to biased signaling of GPCRs, where ligand binding on POR stabilizes different conformational states that are linked to distinct metabolic outcomes. Biased metabolism may allow designing pathway-specific therapeutics or personalized food suppressing undesired, disease-related, metabolic pathways.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ligantes , Redes e Vias Metabólicas , Aromatase/metabolismo , Linhagem Celular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Ensaios Enzimáticos , Transferência Ressonante de Energia de Fluorescência , Humanos , Lipossomos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Imagem Individual de Molécula , Esteroide 17-alfa-Hidroxilase/metabolismo , Esteroide 21-Hidroxilase/metabolismo , Especificidade por Substrato
20.
Elife ; 102021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779550

RESUMO

Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Biologia Molecular/métodos , Imagem Individual de Molécula/métodos , Biologia Molecular/instrumentação , Imagem Individual de Molécula/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...